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A b s t r a c t

Introduction: This study aimed to evaluate the possible role of urolithin A (UA) 
and urolithin B (UB) on the mRNA expression levels of LDL receptor (LDLR) and 
PSCK9 genes, and also of the uptake of LDL particles in HepG2 cells.
Material and methods: The potential role of UA and UB on the induction of 
LDL uptake and the expression of its regulatory genes was explored using 
HepG2 cells and curcumin (20 μM), berberine (50 μM), UA (80 μM), and UB 
(80 μM) as the treatments in the experimental tests. 
Results: The LDL uptake and cell-surface LDLR were higher in cells treated 
with UA in comparison with cells treated with UB, and even in relation to the 
cells treated with curcumin and berberine as positive controls. In addition, 
cells treated with UB showed approximately 2 times greater LDLR expression 
levels compared with curcumin (FC = 2.144, p = 0.013) and berberine (FC 
= 2.761, p = 0.006). However, UA treatment resulted in significantly lower 
expression levels of LDLR compared with curcumin (FC = 0.274, p < 0.001) 
and berberine (FC = 0.352, p = 0.009). UB demonstrated approximately  
8 times higher LDLR expression levels when compared with UA (FC = 7.835, 
p = 0.001). Compared with UB, as well as curcumin and berberine as posi-
tive controls, UA was more efficient in reducing PCSK9 expression levels. Al-
though UB did not show any significant differences compared with curcumin 
and berberine, it showed higher levels of PCSK9 expression when compared 
with the UA group (FC = 3.694, p < 0.001). 
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Introduction 

Elevated plasma levels of low-density lipo-
protein cholesterol (LDL-C) are a  causal risk fac-
tor for atherosclerotic cardiovascular disease  
(ASCVD), which is the main cause of morbidity 
and mortality worldwide [1]. The major pathway 
of LDL-C clearance from the bloodstream is the 
uptake of LDL particles by hepatic LDL receptors 
(LDLRs) [2, 3]. Proprotein convertase subtilisin/
kexin type-9 (PCSK9) is another critical regulator 
of circulating LDL-C levels that, following synthe-
sis, predominantly in the liver, is secreted in plas-
ma to act as a molecular chaperone to direct LDLR 
degradation [2, 4, 5]. PCSK9 binds to the extra-
cellular domain of LDLR at the surface of hepato-
cytes, forming a complex that is endocytosed and 
transported to lysosomes for degradation. This 
process inhibits LDLR recycling and results in in-
creased levels of LDL-C in plasma [6]. Therefore, 
increasing LDLR activity and inhibition of PCSK9 
are effective therapeutic approaches to reduce 
circulating LDL-C levels and prevent the develop-
ment of ASCVD [7–9]. Although most of the re-
search has focused on the interaction between 
secreted PCSK9 and cell-surface LDLR, it is likely 
that intracellular PCSK9 also contributes to LDLR 
degradation [10]. Moreover, the mechanism of ac-
tion of PCSK9 is not limited to LDLR degradation 
and involves the regulation of receptors of macro-
phages with a key role in the loading of lipids, for-
mation of foam cells and atherosclerotic plaques, 
plaque stability, and vascular inflammation [11]. 
In this regard, various interventional studies have 
shown that using lipid-lowering drugs such as 
statins, despite a  significant reduction in LDL-C 
levels through the increase of the LDLR, is less ef-
fective in reaching LDL-C targets in a considerable 
number of patients [12]. Moreover, statin intoler-
ance due to side effects such as the development 
of hepatic damage, myalgia, or polyneuropathy is 
another factor necessitating alternative LDL-low-
ering therapies [13, 14]. In addition, while ap-
proaches utilized for reducing the plasma level of 
PCSK9 or inhibiting LDLR binding through mono-
clonal antibodies and antisense oligonucleotides 
are available, small molecule inhibitors are still 
being actively sought owing to their lower costs 
and ease of administration [15]. One such small 
molecule inhibitor is NYX-PCSK9i, which is safe 
and well tolerated in mice while exerting a potent 
lipid-lowering effect mainly on the non-HDL frac-

tion [16]. However, finding new effective and safe 
lipid-lowering agents is still necessary to prevent 
ASCVD. Recently, several studies have suggested 
a beneficial role for functional foods, natural prod-
ucts, nutraceuticals, and in particular dietary poly-
phenols in cardiometabolic diseases [17–21]. Their 
regulatory effect on lipid metabolism includes the 
entire process from inhibiting enteric lipid absorp-
tion to promoting hepatic excretion of cholesterol 
as follows: lipid absorption reduction through re-
ducing the cell permeability of enteric cells, cho-
lesterol, and triglyceride synthesis inhibition along 
with a reduction in fatty acid uptake, elevation of 
reverse cholesterol transport and catabolism, and 
finally modulation of intestinal flora [22]. As stat-
ed by the International Lipid Expert Panel (ILEP), it 
seems that nutraceutical  therapies are safe and 
well-tolerated options for the management of 
dyslipidemia [23], and their use is recommended 
in people who are statin-intolerant [24].

Ellagic acid (EA) is an active natural polyphenol 
and a  hydrolyzed form of ellagitannins, which is 
found in some fruits and nuts such as pomegran-
ates and walnuts [25].

Under physiological conditions, this polyphe-
nol is metabolized by the gut microbiota to pro-
duce different types of urolithins [25]. Hitherto, 
numerous pharmacological effects have been 
reported for EA including antibacterial, anti-in-
flammatory, preventive, and therapeutic effects 
on obesity, hepato-protective effects, and anti-tu-
moral effects [26, 27]. Antiatherogenic properties 
of EA have been previously reported in several 
experimental and animal studies. EA had a  di-
rect impact on lipid metabolism in vitro [28], and 
could also reduce the plasma levels of cholesterol  
in vivo [29]. In addition, it has been reported that 
EA could increase the expression of genes in-
volved in cholesterol metabolism, such as LDLR, at 
both the mRNA and protein levels in HepG2 cells 
[30, 31] as well as in the liver of diabetic mice [32]. 
However, due to the inter-individual variability in 
polyphenol metabolism as well as low intestinal 
absorbance, EA’s effectiveness in humans remains 
controversial [33]. Nevertheless, its driven metab-
olites, urolithins A (UA) and B (UB) have more bio-
availability than EA and have also exhibited antia-
therosclerotic properties through the regulation of 
cholesterol metabolism pathways [34–36]. It has 
been found that UA and UB could decrease lipid 
plaque deposition and attenuate atherosclerotic 
lesions in animal models through activation of the 

Conclusions: The present results suggest that UA was more effective than UB in promoting LDL uptake as 
well as cell surface LDLR in HepG2 cells. This effect seems to be mostly mediated through the suppression of 
PCSK9 expression but not the induction of LDLR expression.
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class B scavenger receptor (SR-BI) and induction 
of the reverse cholesterol pathway [35, 37]. There-
fore, according to the reported antiatherosclerosis 
effects of UA and UB and the importance of LDL 
particle clearance by liver cells to reduce ASCVD, 
this study aimed to evaluate the possible role of 
UA and UB on the mRNA expression levels of LDLR 
and PSCK9 genes, and also of the uptake of LDL 
particles in HepG2 cells.

Material and methods

Materials

The tested compounds were obtained from 
Xi’an Le Sen Biotechnology Co., Ltd. (Xi’an, China). 
Other materials, including DMSO (d2650, Sigma, 
USA), trypsin-EDTA (15090046, Gibco, USA), RPMI 
1640 medium (Dena Zist, Iran), fetal bovine serum 
(FBS) (10082139, Gibco, USA), antibiotics (penicil-
lin/streptomycin) (15070063, Gibco, USA), Chlo-
roform (107024, Merck, USA), ethanol (100983, 
Merck, USA), BIOzol RNA Lysis buffer (BN-0011.33, 
Bonyakhteh, Tehran, Iran), a  cDNA synthesis kit 
(YT4500, Yekta Tajhiz Azma, Iran), DNase/RNase 
free water (CH8161, Sinaclon, Iran), and a QPCR 
master mix kit (BN-0011.17.4, Tehran, Iran), were 
used for tests.

LDL uptake in HepG2 cells

The hepatoma cell line HepG2 was used as the 
most common in vitro model utilized for studying 
the cholesterol-lowering action of nutraceuticals. 
The LDL uptake was detected by the LDL Uptake 
Cell-Based Assay Kit (KA1327, Abnova, Taiwan), 
according to the manufacturer’s protocol. Briefly, 
the HepG2 cells (10,000 cells/well) were seeded in 
a 96-well plate in RPMI 1640 medium enriched with  
10% FBS and 1% antibiotics at 37°C in a humidi-
fied 5% CO2 atmosphere for 2 days and then treat-
ed with curcumin (20 μM) [38], berberine (50 μM) 
[39, 40], urolithin A (20–160 μM) [41] or urolithin B 
(20–160 μM) [42] and incubated at 37°C with 5% 
CO2 for an additional 24 h. To check the time-de-
pendent properties of urolithin A (80 and 160 μM) 
and urolithin B (80 and 160 μM), a parallel test was 
also carried out with 48 h incubation. After incuba-
tion, the cells were changed to a serum-free medi-

um containing LDL-DyLight 550 (0.01%) (10 μg/ml)  
followed by a further 24 h incubation at 37°C. At 
the end of the LDL uptake incubation, the culture 
medium was aspirated and replaced with fresh cul-
ture medium or PBS, and the degrees of LDL up-
take were assessed using fluorescent microscopy 
(IX53, Olympus) with filters capable of measuring 
excitation and emission wavelengths of 540 and  
570 nm, respectively. Followed by this, immuno-
fluorescence staining of LDLR was also performed. 
According to the kit’s protocol, the cells were fixed 
and stained for LDLR using the Rabbit Anti-LDL 
Receptor Primary Antibody and DyLight 488-con-
jugated secondary antibody, and the staining was 
examined using fluorescence microscopy (IX53, 
Olympus) with a  filter capable of excitation and 
emission at 485 and 535 nm, respectively. All treat-
ments were performed in triplicate.

LDLR and PCSK9 expression in HepG2. 
Cell culture

HepG2 cells were grown in the RPMI 1640 me-
dium enriched with 10% FBS and 1% antibiotics 
at 37°C in a humidified 5% CO2 atmosphere. Once 
the confluency was achieved to 70%, the cells 
(100,000 cells/well) were seeded in a 24-well plate 
(SPL) in normal serum medium for 48 h, and then 
transferred to medium supplemented with cur-
cumin (20 μM) [38], berberine (50 μM) [38–40], 
urolithin A (80 μM) [41] or urolithin B (80 μM) [42] 
and incubated at 37°C with 5% CO2 for a further 
24 h. All treatments were performed in triplicate. 
Three wells were also considered as controls with-
out any treatment. After incubation, the medium 
was removed and cells were prepared for RNA ex-
traction.

RNA extraction and cDNA synthesis

The BIOzol RNA Lysis buffer (BN-0011.33, Bon-
yakhteh, Tehran, Iran) was used to extract total 
cellular RNA. About 1 μg of total RNA with an 
absorbance of 1.8–2 at 260/280 nm (measured 
by a  NanoDrop 2000 spectrophotometer (Ther-
mo, Wilmington, DE, USA)) was used for the 1st 
strand cDNA synthesis using a cDNA synthesis kit 
(YT4500, Yekta Tajhiz Azma, Iran). cDNA synthe-

Table I. Sequences of primers used to evaluate the expression of LDLR and PCSK9

Genes Primers Sequences Primer length [bp] Product length

β-Actin Forward 5′-CTTCCTTCCTGGGCATG- 3′ 17 82

Reverse 5′-GTCTTTGCGGATGTCCAC- 3′ 18

LDLR Forward 5′-ACTGCAAGGACATGAGCGAT- 3′ 20 169

Reverse 5′-TTGGTCCCGCACTCTTTGAT- 3′ 20

PCSK9 Forward 5′-GGAACCTGGAGCGGATTACC- 3′ 20 117

Reverse 5′-CCCGGTGGTCACTCTGTATG- 3′ 20
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sis was completed via the thermocycler device for  
60 min at 37°C and 5 min at 70°C. The synthesized 
cDNA was stored at –20°C for future quantitative 
real-time PCR (qRT-PCR) 

qRT-PCR

To evaluate the relative cell expression levels 
of LDLR and PCSK9 the SYBR Green qPCR meth-
od was applied (LightCycler 96, Roche Diagnos-
tics, Mannheim, Germany) using the BON QPCR 
master mix kit (BN-0011.17.4, Tehran, Iran). The 
sequences of primers are shown in Table I. All re-
actions were carried out in duplicate. The Ct (cycle 
threshold) values of LDLR and PCSK9 were nor-
malized to β-actin (ACTB) as an internal control, in 
each sample, and the comparative (2-ΔΔCt) method 
(fold change (FC)) was used to calculate the mRNA 
expression. 

Statistical analysis

In vitro experiments were repeated three times 
and representative images are shown. The relative 
expression software tool (REST) was employed to 
compare the mRNAs’ fold changes of expression 
between the study groups. Data are presented as 
mean ± SE, and p-values of less than 0.05 were 
considered significant.

Results

LDL uptake

The results showed that 24-hour treatment of 
HepG2 cells with UA (20–160 μM) (Figure 1 A.1) 
and UB (20–160 μM) (Figure 1 B.1) increased 
LDL uptake as well as LDLR on the cell surface in 
a  dose-dependent manner. However, after 48 h, 
both LDL uptake and cell surface of LDLR were re-
duced even at high concentrations (80 and 160 μM)  
of UA (Figure 1 A.2) and UB (Figure 1 B.2). So, the 
concentration of 80 μM and incubation time of  
24 h were selected for the test.

As shown in Figure 2, all treatments illustrated 
higher LDL uptake and cell surface LDLR when com-
pared to the control (PBS treatment) (Figure 2 E).  
However, the LDL uptake and cell surface LDLR 
were higher in cells treated with UA (Figure 2 C) in 
comparison with cells treated with UB (Figure 2 D) 
and even in relation to the cells treated with cur-
cumin (Figure 2 A) and berberine (Figure 2 B) as 
positive controls. However, UB, despite a consider-
able increase in LDL uptake and cell surface LDLR, 
showed no differences compared with curcumin 
and berberine treatments.

LDLR and PCSK9 expression

The results showed that all treatments except 
UA significantly increased the LDL expression lev-

els of the cell surface of HepG2 (Figure 3 A) (at 
least more than 200%) in relation to the control 
(PBS treatment). Interestingly, UB indicated ap-
proximately 2 times greater LDLR expression lev-
els in comparison with curcumin (FC = 2.144, p = 
0.013) and berberine (FC = 2.761, p = 0.006) as 
positive controls. However, UA treatment resulted 
in 20% lower expression levels of LDLR on the cell 
surface of HepG2 in comparison with curcumin 
(FC = 0.274, p < 0.001) and berberine (FC = 0.352,  
p = 0.009) treatments. Moreover, UB demonstrated 
approximately 8 times higher LDLR expression lev-
els when compared to UA (FC = 7.835, p = 0.001). 

In contrast, PCSK9 showed lower expression 
levels in HepG2 cells treated with berberine, 
UA, and UB in relation to the control group (PBS 
treatment), though the difference was significant 
only for UA (FC = 0.194, p < 0.001). Also, berber-
ine showed significantly lower PCSK9 expression 
levels compared with curcumin treatment (FC = 
0.548, p = 0.035). Moreover, in comparison with 
UB as well as curcumin (FC = 0.140, p < 0.001) 
and berberine (FC = 0.255, p < 0.001) as positive 
controls, UA was more efficient in reducing PCSK9 
expression levels in HepG2 cells. Although UB did 
not show any significant differences compared 
with curcumin and berberine treatment, it showed 
higher levels of PCSK9 expression when compared 
to the UA group (FC = 3.694, p < 0.001). 

Discussion

There has been a  recent trend in the use of 
natural products such as polyphenols to improve 
lipid profile and decelerate ASCVD [43, 44]. Nat-
ural products modulate lipid metabolism through 
a variety of mechanisms including anti-oxidative 
stress, anti-inflammation, decreasing the uptake 
and trafficking of fatty acid in hepatocytes, hepat-
ic  de novo  lipogenesis reduction, enhancing lip-
olysis, induction of lipophagy, and increasing fatty 
acid β-oxidation [45]. 

The results of the present study showed no-
tably higher LDL uptake and cell-surface LDLR in 
HepG2 cells treated with curcumin and berberine 
as two polyphenols with documented positive 
roles in cholesterol metabolism and enhancement 
of LDL uptake pathways. Additionally, this study 
demonstrated that both UA and UB are effective 
in promoting LDL uptake as well as in increasing 
the availability of cell-surface LDLR in HepG2 cells, 
though UA had a greater effect compared with the 
other three tested compounds. It was previously 
shown that curcumin by suppressing PCSK9 ex-
pression in hepatic cells could increase cell surface 
LDLR density and LDLR activity [38]. However, in 
this study curcumin did not significantly decrease 
PCSK9 expression levels, though LDLR expression 
level was considerably increased following cur-
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Figure 1. LDL uptake (red) as well as LDLR on the cell surface (green) of HepG2 treated with (A) UA (20–160 μM), 
and (B) UB (20–160 μM) increase dose-dependently. However, they decreased after 48 h. The results shown are 
representative of an experiment repeated in triplicate for each treatment
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cumin treatment, and this might be the reason 
for increased LDL uptake and cell surface LDLR, 
which was observed in the present study. It has 
also been demonstrated that curcumin could 
up-regulate LDLR expression via the sterol regu-
latory element binding protein (SREBP) pathway 
in HepG2 cells [46] as follows: when SREBP binds 
to the promoter of HMGCR, whose expression or 
activity regulation has a critical role in cholesterol 
biosynthesis, the cholesterol biosynthesis speeds 
up. SREBP could also bind to the promoter of LDLR 
that is responsible for hepatic clearance of LDL-C. 

An increased level of cellular cholesterol acts as 
a  negative controller of HMGCR expression [47]. 
SREBP-2 is a simultaneous activator of both LDLR 
and PCSK9 expression [48]. Berberine, as anoth-
er effective cholesterol-lowering phytochemical 
[49], has been shown to increase LDLR expres-
sion in vivo and promote LDL uptake in vitro [50]. 
The results of the present study also illustrated 
increased in vitro LDL uptake following berberine 
treatment, which might occur due to increased 
LDLR expression levels. Additionally, although ber-
berine exerted anti-PCSK9 activity in some pre-

Figure 2. LDL uptake (red) as well as LDLR on the cell surface (green) of HepG2 treated with (A) curcumin (20 μM), 
(B) berberine (50 μM), (C) UA (80 μM), (D) UB (80 μM) after 24 h. (E) PBS and (F) No fluorescence. The results shown 
are representative of an experiment repeated in triplicate for each treatment

A

C

E

A B

B

D

F

Curcumin (20 μM)

UA (80 μM)

PBS

Berberine (50 μM)

UB (80 μM)

No Fluorescence

Figure 3. HepG2 LDLR (A) and PCSK9 (B) fold change expression in treatment groups. All data were normalized to 
the control group (PBS)

9

8

7

6

5

4

3

2

1

0

2.0

1.5

1.0

0.5

0

LD
LR

 f
ol

d 
ch

an
ge

s

PC
SK

9 
fo

ld
 c

ha
ng

es

p < 0.01

1

1

1.38

0.739

0.194

0.855

2.862
2.275

0.804

6.191

p < 0.01

p < 0.01p < 0.01
p < 0.01

p < 0.01

p < 0.001

p < 0.001 p < 0.001

p < 0.001

p < 0.001p < 0.001

p < 0.01

 PBS Curcumin Berberine Urolithin A Urolithin B  PBS Curcumin Berberine Urolithin A Urolithin B



Shiva Ganjali, Maryam Matbou Riahi, Khadijeh Mahboobnia, Milad Iranshahy, Maciej Banach, Ali Jangjoo, Sorour Ashari,  
Zahra Tayarani-Najaran, Amirhossein Sahebkar

1838 Arch Med Sci 6, November / 2023

vious studies [51, 52], this study failed to show 
decreased expression levels of PCSK9 in HepG2 
cells after berberine treatment. Nevertheless, in 
comparison with curcumin treatment, the HepG2 
PCSK9 expression level was significantly lower in 
cells treated with berberine. Moreover, another 
study reported that berberine through promoting 
foam cell formation by inducing scavenger recep-
tor A  (SR-A) expression in macrophages could 
counter-balance the beneficial effect of lowering 
serum cholesterol and subsequently lead to the 
development of atherosclerosis [53].

Recently, various clues to the role of gut micro-
biota and its related metabolites in atherosclerosis 
development and progression have emerged [54]. 
Urolithins are secondary metabolites of the gut mi-
crobiome transformation of the natural polyphenols 
ellagitannins and ellagic acid [55], which are found 
in some dietary products including certain nuts 
and fruits. Urolithins are derived from dibenzopy-
ran-6-one and their differences are in hydroxyl group 
substitutions [56]. UroM5, UroD, UroE, UroM6, UroC, 
UroM7, UroA, IsoUroA, UroB, and IsoUroB are step-
by-step products of biotransformation of ellagic acid 
to intermediate and final products through hydroly-
sis, decarboxylation, and dihydroxylation reactions. 
The concentration of urolithins as a consequence of 
inter-individual differences in gut microbiota varies 
from person to person and can be categorized as 
metabotypes A, B, and 0: the first is UroA producers; 
the second is Uro-A, IsoUro-A, and Uro-B producers; 
and the last one is Uro-non-producers [57].

Urolithins are correlated with different car-
diometabolic factors. While UroA is correlated 
with apolipoprotein A-I  and intermediate-HDL 
cholesterol, UroB and IsoUroA are correlated with 
LDL, VLDL, total cholesterol, oxidized-LDL, apoli-
poprotein B:apolipoprotein A-I  ratio, and apolipo-
protein B, and even could be potentially used as  
biomarkers of cardiometabolic disease [58]. 

Although the beneficial protective effect of 
UroB against cardiovascular disorders is mediated 
mainly through increasing the efflux of cholesterol 
from macrophages, the safety of UroB for clinical 
studies should be investigated. The other product 
of ellagic acid biotransformation, UroA, has sup-
porting evidence of anti-atherosclerotic activity, 
which is partly related to its mitophagy-inducing 
activity. UroA also has an acceptable safety profile 
that facilitates its use in clinical trials [57]. 

This study for the first time evaluated in vitro 
effects of UA and UB, as microbiota metabolites 
with antiatherosclerotic properties [34–36, 59], 
on LDL uptake and its related genes. Interesting-
ly, the results of the present study indicated that 
UA was more efficient in promoting LDL uptake as 
well as cell surface LDLR in HepG2 cells compared 
with the other treatments. Although the LDLR 

expression showed lower levels in the UA group 
compared with the other tested compounds, the 
significantly  greater reduction of PCSK9 expres-
sion levels might be the reason for increasing the 
availability of LDLR on the cell surface and subse-
quent LDL uptake in HepG2 cells treated with UA. 
In contrast, UB was found to have a strong impact 
on the expression of LDLR in HepG2 cells, but it 
did not significantly reduce the expression lev-
el of PCSK9. To the best of our knowledge, there 
has been no previous document on the possible 
role of UA and UB in regulating LDL uptake, while 
the antiatherosclerotic properties of these com-
pounds were previously suggested [60–62]. It was 
shown that UA could reduce ox-LDL-induced cho-
lesterol accumulation in macrophages and pro-
mote cholesterol efflux from cells, hence interfer-
ing with cholesterol metabolism possibly through 
the reverse cholesterol transport pathway [61]. 
Similarly, UB was also reported to be able to in-
duce reverse cholesterol transport via modulation 
of the expression of SR-BI and ATP-binding cas-
sette (ABC) transporter A1 (ABCA1) and reverse 
lipid uptake by macrophages. These mechanisms 
provide a basis for the application of urolithins as 
potential antiatherosclerotic compounds [62]. In 
addition, it was demonstrated that UA through 
inhibition of lipase, α-glucosidase and dipeptidyl 
peptidase-4 could prevent metabolic-associated 
disorders such as diabetes and its related com-
plications [63]. Nevertheless, some experiments 
have revealed that once urolithin is absorbed into 
the blood circulation, it conjugates mainly with 
glucuronide and sulfate, and these metabolites 
have lower biological activity compared with uro-
lithin alone, so this is one of the limitations of this 
study, and the formulation and targeted delivery 
of urolithins is an important task for exploiting the 
therapeutic potential of these compounds [64]. 
There have been recent efforts in this direction, 
and a PEGylated liposomal formulation of UA was 
prepared and characterized, and showed accept-
able morphological properties, size distribution, 
and sustained release profile [65]. Another area 
worthy of investigation which was not considered 
in this study would be a detailed assessment of 
LDLR-PCSK9 interaction in response to urolithin 
treatment. Further evidence from clinical studies 
would also be necessary to confirm the LDL-lower-
ing activity of urolithins, particularly UA and UB, in 
clinical practice. Such clinical trials would be more 
feasible for UA since the safety of this compound 
has already been confirmed in clinical studies [66, 
67]. The importance of in vivo studies to confirm 
the beneficial effects of UA relates mainly to the 
fact that in many in vitro studies there are con-
cerns about the non-physiological concentrations 
used. Moreover, in vitro studies usually ignore the 

https://www.sciencedirect.com/topics/medicine-and-dentistry/apolipoprotein-b
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role of the two key factors of metabolism and tis-
sue distribution. Therefore, confirmation of the 
present findings in in vivo models could provide ro-
bust evidence on the mechanism of the lipid-regu-
lating action of urolithins. Some other possibilities 
for future studies could be using conjugated forms 
of urolithins and stratification of participants ac-
cording to the metabotype responsiveness of their 
gut microbiota ecology [68]. Finally, it remains to 
be determined whether the anti-atherosclerotic 
action of urolithins can also be attributed to lip-
id-independent actions of these compounds such 
as anti-inflammatory and antioxidant activities, 
and whether these compounds can exert clinically 
relevant pleiotropic effects like what is known and 
well established for statins [69–72]. 

In conclusion, the present results suggest that 
UA was more effective than UB in promoting LDL 
uptake as well as cell surface LDLR in HepG2 cells. 
This activity seems to be mostly mediated through 
the suppression of PCSK9 expression but not the 
induction of LDLR expression. These findings sup-
port the promising potential of UA for the treat-
ment of atherosclerosis, which needs to be con-
firmed in future in vivo studies. Also, mechanistic 
investigation of the antiatherosclerotic properties 
of UA is recommended.
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